If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-22m+50=0
a = 2; b = -22; c = +50;
Δ = b2-4ac
Δ = -222-4·2·50
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{21}}{2*2}=\frac{22-2\sqrt{21}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{21}}{2*2}=\frac{22+2\sqrt{21}}{4} $
| 7-8m=-3m-3 | | ─5─(15x─1)=2(7x─16)─x | | P²+16p+64=0 | | 110+(3x-40)=180 | | -16=-x8 | | 6(5p-4)+8=38 | | 4n2-√5n=-5 | | a14=7 | | -10n+6n-2=-10-6n | | a14=4 | | x(x+5)=62 | | t+1/3=1/2 | | -10-9w=-7w+8 | | -10-t=8+t | | -9b=-3-8b | | -4(7+6r)-(1+4r)=55 | | (t-9)^2=21 | | 3(3x+3)-9=2(5x-22)+45. | | -u=-6-3u | | 4x×23=34 | | r^2+15=61 | | -9f+8=-10f | | X/4-(x-4)/3=5/3 | | 2/1(3-x)-1=4 | | x^2-8x=-15, | | 2x-11+2x-4=13 | | 15z−5=4z | | 8x+2/7x-3=-7/5 | | 20v=680 | | -0,4x+9=0 | | 12t=36−9t | | 10y+1=2y+4 |